

ANNSIM ‘21, July 19-22, 2021, Fairfax, VA, USA; ©2021 Society for Modeling & Simulation International (SCS)

X LANGUAGE: AN INTEGRATED INTELLIGENT MODELING AND SIMULATION

LANGUAGE FOR COMPLEX PRODUCTS

Lin Zhang

Fei Ye

Yuanjun Laili

Kunyu Xie

Pengfei Gu

Xiaohan Wang

Chun Zhao

Beihang University

Xueyuan Road No.37, Haidian District

Beijing Information Science and Technology

University

Beijing, CHINA

{zhanglin,yefei,lailiyuanjun,

zy1903114,by2003151,by1903042}@buaa.edu.cn

North Ring No.35, Chaoyang District

Beijing, CHINA

zhao_chun@189.cn

Xuesong Zhang

Minjie Chen

Jilin University

Qianjin Street No.2699, Chaoyang District

Changchun, Jilin Province, CHINA

xs_zhang@126.com

Beijing Huaru Technology Co., Ltd

Dongbeiwangxi Road No.10

Haidian District, Beijing, CHINA

jimi_chen@163.com

ABSTRACT

Modeling and simulation have become an important means of supporting analyses and development of

complex products. At present, for the development of full-process and full-system modeling and simulation,

system modeling languages (such as SysML) are often required to cooperate with multi-physics modeling

languages and simulation platforms (such as Modelica, Simulink), which is difficult to ensure the true unity

of the whole system, the consistency between the various layers and the traceability of the modeling and

simulation process. In response to this problem, this paper proposes a new integrated intelligent modeling

and simulation language—X language, which supports the description of system-layer structure and

physical behavior, as well as modeling of complex agent models. Interpreter and engine are developed to

enable X language to support the simulation of continuous, discrete event and agent models. Finally, the

tank model is taken as a case to verify the modeling and simulation capabilities of the X language.

Keywords: complex products, X language, modeling and simulation, integration, intelligent.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

1 INTRODUCTION

Complex products refer to a class of products with complex customer requirements, system components,

product technology, manufacturing processes, test and maintenance, project management, and complex

working environment (Li et al. 2011). It has the characteristics of high design difficulty, high cost of test

operation and maintenance, strict quality requirements, and high demand for intelligence. At the same time,

it faces major challenges such as one-time success, on-time delivery, cycle, and cost compression. To solve

the above problems, it’s essential to rely on modeling and simulation.

In recent years, Model-based Systems Engineering (MBSE) has become an important means to support

system modeling and development (Ramos, Ferreira, and Barcelo 2012). Taking complex products as an

example, MBSE transforms the traditional R&D method based on documents and physical models into a

model-driven R&D method. This formal description method makes MBSE reusable, unambiguous, easy to

understand, and easy to spread. MBSE uses System Modeling Language (SysML) to model the whole

process of the system to realize the model-based unified management and optimization of the whole process

of product development (Friedenthal, Moore and Steiner 2008). Since SysML cannot be directly simulated,

it is necessary to use other multi-domain modeling and simulation methods to verify the correctness and

completeness of the model.

A mainstream approach is to uniformly describe system components in different domains based on a unified

modeling language to achieve seamless integration and data exchange of multi-domain models (Zhao et al.

2006). For complex products with integrated mechanical, electrical, hydraulic, and control types, firstly

based on system modeling language (such as SysML, IDEF, etc.) for demand modeling and architecture

design, and then based on physical modeling language (such as Modelica, etc.) and coordinate integration

standard specifications (FMI, HLA, etc.), to achieve the development and integration of physical models,

and finally through the mapping and conversion among the system model and the physical model for full

system modeling and simulation, to achieve unified management of different stages of product

development. However, due to the disconnection between the system modeling language and the physical

domain modeling language, the connection needs to be realized through conversion. Therefore, it is difficult

to ensure the consistency and traceability of the whole process. Moreover, this method lacks the ability for

intelligent product modeling and simulation.

To solve the above problems, this paper proposes a new integrated intelligent modeling and simulation

language, which supports the description of system-layer structure and physical behavior and simulation,

modeling of complex agent models, and supports continuous, discrete event and hybrid simulation. At the

system modeling layer, the framework is divided into five parts of definition, connection, state machine,

equation, and action, designed to represent structure and behavior. At the layer of physical modeling and

simulation, the continuous model, discrete event model, and agent model are incorporated into the couple

models of DEVS (Discrete Event System Specification) (Zeigler and Sarjoughian 2017). The interpreter

and engine are developed to realize the simulation of the whole system of complex products.

2 RELATED WORKS

In terms of complex products modeling, typical modeling languages and methods include modeling

methods based on DEVS, system modeling methods based on SysML, multidisciplinary unified modeling

methods based on Modelica, Bond diagram-based system dynamic structure modeling method, European

simulation language (ESL)-based software and hardware coordination modeling method, Dymola

language-based system dynamics modeling method, and high-level architecture (HLA)-based distributed

simulation system modeling method.

SysML is the standard modeling language for systems engineering. It is particularly effective for

requirements analysis, structural design, functional description, and system verification in system

engineering applications (INCOSE 2012). However, the native SysML model is static and cannot be

directly used to verify the correctness and completeness of the model. In this case, the SysML model should

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

be converted to a model of a specific domain, such as Modelica models. Generally, for systems with

different characteristics, the types of SysML diagrams used are also different. Peak et al. (2007) proposed

a method of using SysML parameter diagrams to describe the behavior of continuous systems. Batarseh

and McGinnis (2012) elaborated on the description of discrete event systems based on SysML activity

diagrams, sequence diagrams, and state machine diagrams. Although the SysML model can be extracted

and used by the conversion method, the system engineer must add a large amount of simulation code,

especially the code related to the system behavior, to obtain an executable simulation model. This method

is cumbersome and not very versatile (Kapos et al. 2014). As a system-level description language, SysML

can describe the event relationships between agents very well, and can easily establish conceptual models

of agents (Sha, Le and Panchal 2011; Maheshwari, Kenley and Delaurentis 2015). However, the native

SysML model is static, and the simulation of the agent model needs to rely on other simulation tools.

Moreover, SysML is not originally designed for the agent model.

Modelica was proposed in 1997 based on summarizing and unifying the previous multiple modeling

languages. The language has many advantages such as high model reusability, simple and convenient

modeling, no symbol processing, etc. At the same time, the system standard library of Modelica also

provides basic components and typical system models in many fields, including electrics, fluids,

thermodynamics, machinery, etc. (Fritzson 2011), which provides great convenience for model

development and simulation of physical systems. Although Modelica can model and simulate continuous,

discrete, and hybrid models, it lacks sufficient support for discrete models due to its equation-based

characteristics (Nutaro et al. 2012) and has the problems of inconvenience in description and low simulation

efficiency. Therefore, Modelica lacks support for modeling large-scale discrete systems (Elmqvist et al.

2012; Beltrame and Cellier 2006). As one of the most commonly used languages in modeling and

simulation, Modelica is also employed in agent models. However, due to the insufficient support of

Modelica for discrete models, the research of agent modeling based on Modelica is mainly focused on the

support of third-party libraries. In addition, some studies focus on using Modelica to describe continuous

behaviors or actions in agents, rather than modeling and simulation for agents or the whole agent system

(Aertgeerts et al. 2015; Schaub, Hellerer and Bodenmüller 2012).

DEVS is a modular, hierarchical, and formal specification for system modeling and simulation, supporting

object-oriented mechanisms. The specification was initially only used to build discrete systems, and

subsequent research has enriched and perfected the specification for modeling and simulation of hybrid,

i.e. both continuous and discrete, systems. As a kind of discrete model, the agent model can be described

in DEVS very well. Zhang (2013) constructed a complex agent perception architecture based on multiple

types of atomic models, and the BDI model is used as a component of the entire perception architecture.

However, the entire model is too large, and many parts are not common to most agent models, so it appears

to be relatively redundant. Akplogan et al. (2010) used the DEVS couple model to build a BDI agent model

to solve the problem of agent decision-making in agricultural applications and proved the feasibility of the

overall architecture. Müller (2008) used DEVS to build a set of system models from the perspective of

multi-agents and modified the original DEVS atomic model to adapt to the characteristics of multi-agents.

However, the method in the article is not applicable when facing a single complex agent. Although there

are many agent models based on DEVS, the specifications provided by DEVS are relatively simple

compared to the agent model, and the process of constructing the agent model also needs to reorganize the

DEVS model.

To sum up, the existing modeling languages are mostly aimed at a certain part of modeling and simulation

and lack the ability of full-process collaborative design. Although the integrated method of system design

and simulation can realize the unified management of different stages of product development, its essence

is still achieved through the mapping and conversion between languages. It may be easy to deal with a

single domain model, however, it is difficult to support the modeling and simulation of complex systems

that contain continuous, discrete event and intelligent properties.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

3 HIERARCHY AND BASIC ELEMENTS OF X LANGUAGE

Hierarchy of X Language

Couple Model

Continuous Model Discrete Model Agent Model

Definition Connection State Machine EquationAction

Level of System Modeling

Level of Model Simulation

Figure 1: Hierarchy of X language.

The original intention of designing X language is to support the description of system-layer structure and

physical behavior and simulation verification, modeling and simulation of various complex agent models,

continuous/discrete and hybrid simulation. As shown in Figure 1, at the level of system modeling, five parts

are designed to express the structure and behavior of the system. At the model simulation level, the

continuous model, discrete model, and agent model are regarded as part of the couple model, which supports

the verification of physical behavior.

As shown in Figure 2, X language modeling framework consists of 5 parts. The definition and connection

parts define the system model from a global perspective, explaining which components the system contains

and the connection relationship among them, mainly used to describe the structure. The equation, action,

and state machine are used to describe system behavior and the description form varies according to the

characteristics of the model. For example, continuous models can be modeled by equations, and discrete

models modeled by state machines.

Modeling Framework of

X Language

Structural Properties Behavioral Properties

 parameter:

part:

 connection:

connect (, ...)

connect (, ...)

 state:

initial state

 equation:

der (H)

 action:

function (X)

Figure 2: Modeling framework of X language.

X language supports model-based system engineering and can provide the ability to verify the entire process

of system design. The model building can be directly interpreted as simulatable DEVS codes via the

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

interpreter. The X language engine is a multi-domain engine designed based on DEVS, which can support

cross-domain modeling in multiple domains including continuous, discrete, and agent models. The

simulation result can be directly fed back to the designer to verify the system function.

3.1 Definition

The definition part defines the elements and their relationships from the system structure layer. These

elements are the basis of other section and commonly composed of parameter properties, composition

properties, value properties, port properties, etc., which are used to define the parameters and their types to

be instantiated, the internal structure of the module, state variables, the external module to be called, and

the behavior sequence of the agent, respectively. In addition, modules that have been defined somewhere

can be imported or inherited in this section.

The following is the grammar of the definition part described in the extended BNF, where {A} means 0 or

more As and [A] means an optional A.

definition_section ::={(import_clause | extends_clause
 | class_definition
 | parameter_component_clause)';'}
 { port_section
 | part_section
 | value_section
 | plan_definition}
import_clause ::= 'import' (IDENT '=' name | name ('.' ('*' | '{' import_list '}'))?)
extends_clause ::= 'extends' type_specifier [class_modification]
class_definition ::= ('encapsuate')? class_prefixes class_specifier
parameter_component_clause ::= 'parameter' type_specifier component_list
port_section ::= 'port:'{port_component_clause}
part_section ::= 'part:'{component_clause';'}
value_section ::= 'value:'{component_clause';'}
import_list ::= IDENT {',' IDENT}
component_clause ::=['replaceable'] type_prefix type_specifier component_list

3.2 Connection

The connection part defines the connection relationship among the components in the couple model from

the structural level. This connection is realized through ports, which transfer events, energy, and data, as

well as services provided and requested by the connection. The extended BNF of the connection part is as

follows.

connection_section ::= 'connection:'{connect_clause';'}
connect_clause ::= 'connect' '(' component_reference ',' component_reference ')'

3.3 State Machine

The state machine part is used to describe the discrete behavior of the model and express the changes of the

system states as events occur. In each state, it generally includes the duration of the state, the behavior

generated by the internal/external event, and its output. Specifically, in the when_entry area, the duration

of a state is defined by the function statehold. In the when_receive area, the model receives external event

triggers and generates output. The when timeover statement is used to describe the behavior triggered by

internal events and the resulting output. The extended BNF of the state machine part is as follows.

state_section ::= 'state:' {state_definition}
state_definition ::= 'initial' 'state' IDENT (state_statement)* 'end'';'

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

 | 'state' IDENT (state_statement)* 'end'';'
 | 'state' IDENT catch_clause ((when_receive_clause';')|(when_statement';'))* 'end'';'
state_statement ::= (when_entry_clause
 | when_receive_clause
 | when_goto_out_clause)';'

3.4 Equation

In the equation part, systems with continuous behavior are described based on mathematical equations with

declarative and non-causal characteristics. Specifically, a set of ordinary differential/partial differential

equations is used to describe a model with continuous behavior, among which, equations can be divided

into simple equations, if-equations, when-equations, when-receive equations, for-equations, etc. The if-

equation is used to define the behavior triggered by constraint conditions. The when-equation is used to

define the behavior triggered by an instantaneous state. The for-equation is used to define the behavior that

is cyclically executed when a certain condition is met. The extended BNF of the equation part is as follows.

equation_section ::= 'equation:' {equation ';'}
equation ::= simple_equation
 | if_equation
 | for_equation
 | when_receive_equation
 | when_equation

3.5 Action

The action part mainly describes the behavior of the agent model, as well as intelligent behavior. The agent

model is constructed based on the BDI architecture, from which the plan of each agent can be extracted.

On this basis, the execution logic of multiple defined plans is sorted to form a plan sequence, which can

effectively control the behavior of the agent. The extended BNF of action part is as follows.action_section

::= 'action:' {statement';'}

statement ::= send_clause
 | simple_statement
 | function_call
 | break_statement
 | continue_statement
 | return_statement
 | if_statement

| for_statement
 | while_statement
 | when_statement
 | statehold_clause
 | run_statement
 | agentover_statement
 | transition_clause

The above 5 parts are the basic components of model description, when modeling, the structure and

behavior of the model are described in the forms of classes, including continuous, discrete, couple, agent,

record, function, and connector class. A class is composed of one or more parts, as shown in Figure 3.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

Class of X Language

Continuous Discrete Agent Couple Record Function Connector

Definition

Equation

Definition

State Machine

Definition

Action

Definition

Connection

Definition Definition

Action

Definition

Figure 3: Composition of X language classes.

4 THE INTERPRETER AND ENGINE FOR X LANGUAGE

X language is an object-oriented multi-domain system modeling language. The elements of the language

include not only the characteristics of traditional programming language, but also the characteristics of

equation-based modeling languages. These two kinds of languages usually adopt different routes in

interpretation, which leads to different technical routes in X language interpretation.

The interpretation of X language is divided into two stages, namely the front-end and the back-end. In the

front-end, the interpreter will perform lexical analysis and syntax analysis on the source code to obtain an

abstract syntax tree, and finally, make a symbol table by traversing and collecting the information of the

elements in the model to prepare for the subsequent interpretation. In the back-end part, the interpreter will

process the abstract syntax tree that has been processed by the front-end.

When building the engine for X language, it is necessary to consider the simulation capabilities for the

domains that need to be supported and the interaction among them. DEVS is a commonly used multi-

domain modeling and simulation framework, which can support continuous, discrete event, and agent

simulation (Zeigler and Sarjoughian 2017), therefore, it is chosen for the X language engine.

In the X language engine, the communication between the adjacent simulator and coordinator is based on

the message. Each time an event occurs (internal or external), the coordinator will send a transformation

message to its child nodes to inform them to perform the transformation. When the simulator executes its

internal or external events, it will calculate its next state. If it performs internal transformation, it also needs

to send the output to its parent coordinator. There are three types of communications between the simulator

and the coordinator, which are the internal and external event notification from the coordinator to the

simulator and the output from the simulator to the coordinator.

5 CASE STUDY

The three components of the tank system-the tank, the PI controller, and the source of liquid-are explicit in

Figure 4. The tank is connected to the controller and liquid source through connectors. Liquid enters the

tank from the source, and leaves the tank at a rate controlled by the valve.The tank has four connectors: qIn

for input flow, qOut for output flow, tSensor for providing fluid level measurements, and tActuator for

setting the position of the valve at the outlet of the tank.

The liquid level h in the tank must be maintained at a fixed level as closely as possible. The flow of the

liquid source increases sharply at time = 150 to the factor of three of the previous flow level, which creates

an interesting control problem that the controller of the tank has to handle.

The X code of this case is demonstrated in Appendix. In order to facilitate readers to understand the

modeling method of X language, combined with the content of Chapter 3, a brief description of the case

code is given. We simulate the tank system and obtain the response as shown in Figure 5.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

tankliquid source

Agent

PI controller

qIn

tActuator

tSensor cIn

cOut

qOut

valve

valve

valve

sOut

levelSensor

Figure 4: A tank system with a tank, a source for liquid, and a controller.

Figure 5: System simulation result.

Split the tank system into 5 models, namely topmodel, LiquidSource, TankPI, Tank, and

PIcontinuousController, where topmodel is a couple model, including LiquidSource and TankPI, and

TankPI is also a couple model, including Tank and PIcontinuousController, Tank and

PIcontinuousController are simple models.

The definition part is used in all these 5 models, such as the part in the topmodel and the parameter, value,

and port in the Tank. The topmodel is a couple model, the connection part needs to be used to define the

relationship between different components. For example, the qOut of ls and the qIn of tpi are connected to

each other to indicate the direction of liquid flow. Since the flow rate of the LiquidSource is discrete, it is

described by state machine. The LiquidSource has three states including init, pass, and idle. Among them,

the duration of the state init is 0, and the next transition state is pass. When a state transition occurs, the

current Flowlevel is assigned to the output event port qOut. The duration of the state pass is 150, and the

next transition state is idle. When a state transition occurs, 3 times the Flowlevel is assigned to the output

event port qOut, then enters the state idle and remains the state. The liquid level h in the tank changes

continuously with time, so its behavior can be described by equations as demonstrated in Tank. The

controller is an agent, which is used to control the liquid level h in the tank to be maintained at a fixed level

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

as closely as possible. In the PIcontinuousController, there is only one task of controlling the liquid level,

so only one plan is needed. The controller takes the value of the current level as input, calculating the level

at the next moment through the equation, and transmits the result to the Tank to complete the entire control

process. After the controller model completes a loop, it will wait for the next input information.

6 CONCLUSION

Modeling and simulation have become an important means of supporting analyses and development of a

complex product. However, the existing modeling languages lack full-process modeling and simulation

capabilities, and it is often necessary to complete integrated modeling through multiple language

conversions or tool integration. Therefore, this paper proposes a new integrated intelligent modeling and

simulation language - X language, which supports the description of system-level structure and physical

behavior, as well as modeling of complex agent models. Interpreter and engine are developed to enable X

language to support the simulation of continuous, discrete event and agent models. Finally, the tank system

was taken as a case to verify the modeling and simulation capabilities of the X language. Due to space

limitations, this paper does not elaborate enough on the X language, and the authors will further introduce

it in subsequent papers.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China, No.2018YFB1701600. The authors

hereby would also like to thank Dr. Tingyu Lin and Dr. Guoqinag Shi from Beijing Institute of Electronic

System Engineering, for participating in the discussions and providing valuable suggestions.

A APPENDICES

Please enter the following link to view the code: https://github.com/ffsuiyue/xcode

REFERENCES

Aertgeerts, A., B. Claessens, R. D. Coninck, and L. Helsen. 2015. “Agent-Based Control of A

Neighborhood: A Generic Approach by Coupling Modelica with Python”. In Proceedings of Building

Simulation 2015, pp. 456-463. Hyderabad, India.

Akplogan, M., G. Quesnel, F. Garcia, A. Joannon, and R. Martin-Clouaire. 2010. “Towards A Deliberative

Agent System Based on DEVS Formalism for Application in Agriculture”. In Proceedings of the 2010

Summer Computer Simulation Conference, pp. 250-257. Ottawa, Canada.

Beltrame, T., and F. E. Cellier. 2006. “Quantised State System Simulation in Dymola/Modelica Using the

DEVS Formalism”, In Proceedings of the 5th International Modelica Conference, pp. 73–82.

Elmqvist, H., F. Gaucher, S. E. Mattsson, and F. Dupint. 2012. “State Machines in Modelica”.

In Proceedings of the 9th International MODELICA Conference, pp. 37-46. Munich, Germany。

Friedenthal, S., A. Moore, and R. Steiner. 2008. “OMG Systems Modeling Language (OMG SysML™)

Tutorial”. INCOSE International Symposium, vol.18, pp. 1731-1862.

Fritzson, P. 2011. “Introduction to Modeling and Simulation of Technical and Physical Systems with

Modelica”. Wiley-IEEE Press. New York, USA.

INCOSE 2012. “Systems Engineering Handbook, version 3.2.2 Edition”, International Council on Systems

Engineering. San Diego, CA, USA.

Kapos, G. D., V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos. 2014. “Model-Based

System Engineering Using SysML: Deriving Executable Simulation Models with QVT”. In

Proceedings of the 2014 Systems Conference, pp.531-538. Ottawa, Canada.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

Li, T. , B. H. Li, X. D. Chai, and X. F. Yan. 2011. “Meta Modeling Framework for Complex Product

Multidiscipline Virtual Prototyping”. Computer Integrated Manufacturing Systems, 17(6), pp. 1178-

1186.

Maheshwari, A., C. R. Kenley, and D. A. Delaurentis. 2015. “Creating Executable Agent‐Based Models

Using SysML”. INCOSE International Symposium vol.25, pp.1263-1277.

Müller, J. P. 2008. “Towards A Formal Semantics of Event-based Multi-Agent simulations”. International

Workshop on Multi-Agent Systems and Agent-Based Simulation, pp. 110-126.

Nutaro, J. J., P. T. Kuruganti, V. A. Protopopescu, and M. Shankar. 2012. “The Split System Approach to

Managing Time in Simulations of Hybrid Systems Having Continuous and Discrete Event

Components”. SIMULATION vol. 88, pp. 281–298.

Peak, R. S., R. M. Burkhart, S. A. Friedenthal, M. W. Wilson, M. Bajaj, and I. Kim. 2007. “Simulation-

Based Design Using SysML part 1: A Parametrics Primer”. INCOSE International Symposium vol.17,

pp.1516-1535.

Ramos, A. L., J. V. Ferreira, and J. Barcelo. 2012. “Model-Based Systems Engineering: An Emerging

Approach for Modern Systems”. IEEE Transactions on Systems Man & Cybernetics Part C vol.42, pp.

101-111.

Schaub, A., M. Hellerer, and T. Bodenmüller. 2012. “Simulation of Artificial Intelligence Agents Using

Modelica and the DLR Visualization Library”. In Proceeding of the 9th International Modelica

Conference.

Sha, Z., Q. Le, and J. H. Panchal. 2011. “Using SysML for Conceptual Representation of Agent-Based

Models”. In Proceedings of the 2011 Computers & Information in Engineering Conference vol.54792,

pp. 39-50. Washington, DC.

Zeigler, B. P., and Sarjoughian H. S. 2017. “Modeling and Simulation of Systems of Systems”. Guide to

Modeling and Simulation of Systems of Systems, pp. 3-11. Springer, Cham.

Zhang, M. 2013. “Constructing A Cognitive Agent Model Using DEVS Framework for Multi-agent

Simulation”. In Proceeding of the 15th Eur. Agent Syst. Summer School, pp. 1-5.

Zhao, J. J., J. W. Ding, F. L. Zhou, and L. P. Chen. 2006. “Modelica and Its Mechanism of Multi-domain

Unified Modeling and Simulation”. Journal of System Simulation 18(S2), pp. 570-573.

AUTHOR BIOGRAPHIES

LIN ZHANG is a Professor at Beihang University, China, Past President and Fellow of SCS. His research

interests include modeling and simulation, cloud manufacturing, and model engineering. His email address

is zhanglin@buaa.edu.cn.

FEI YE is a Ph.D. student of Automation Science and Electrical Engineering at Beihang university. He

received his master's degree from Beihang University in 2018. His research interests include modeling and

simulation, system engineering, and intelligent optimization. His email address is yefei@buaa.edu.cn.

YUANJUN LAILI is an Assistant Professor at Beihang University. She is also a member of SCS and an

Associate Editor of “International Journal of Modeling, Simulation, and Scientific Computing”. Her main

research interests are in the areas of intelligent optimization, modeling and simulation of manufacturing

systems. Her email address is lailiyuanjun@buaa.edu.cn.

KUNYU XIE is a Ph.D. student of Automation Science and Electrical Engineering at Beihang University.

He received his bachelor’s degree from Beihang University in 2019. His research interests include modeling

and simulation of continuous, hybrid, and discrete systems. His email address is zy1903114@buaa.edu.cn.

PENGFEI GU is a Ph.D. student of Automation Science and Electrical Engineering at Beihang University.

He received his master's degree from university of science and technology Beijing in 2019. His research

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

Zhang, Ye, Laili, Xie, Gu, Wang, Zhao, Zhang, and Chen

interests include modeling and simulation, system engineering and evolutionary game theory. His email

address is by2003151@buaa.edu.cn.

XIAOHAN WANG is a Ph.D. student at Beihang University. His research interests include agent-based

modeling and simulation, reinforcement learning, and discrete system simulation. His email address is

by1903042@buaa.edu.cn.

CHUN ZHAO is an Assistant Professor at Beijing Information Science and Technology University, China.

He focuses on the Cloud Manufacturing, Modeling & Simulation of complex system, and FPGA based

cloud-edge systems. His email address is zhao_chun@189.cn.

XUESONG ZHANG is an Assistant Professor of Jilin University. His main research interests include

parallel computing, parallel simulation, and smart manufacturing system scheduling. His email address is

xs_zhang@126.

MINJIE CHEN is a senior engineer of Beijing Huaru Technology Co., Ltd. His research interests include

modeling and simulation, reinforcement learning. His email address is jimi_chen@163.com.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 16,2023 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

