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ABSTRACT 

Modeling and simulation have become an important means of supporting analyses and development of 

complex products. At present, for the development of full-process and full-system modeling and simulation, 

system modeling languages (such as SysML) are often required to cooperate with multi-physics modeling 

languages and simulation platforms (such as Modelica, Simulink), which is difficult to ensure the true unity 

of the whole system, the consistency between the various layers and the traceability of the modeling and 

simulation process. In response to this problem, this paper proposes a new integrated intelligent modeling 

and simulation language—X language, which supports the description of system-layer structure and 

physical behavior, as well as modeling of complex agent models. Interpreter and engine are developed to 

enable X language to support the simulation of continuous, discrete event and agent models. Finally, the 

tank model is taken as a case to verify the modeling and simulation capabilities of the X language. 

Keywords: complex products, X language, modeling and simulation, integration, intelligent. 
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1 INTRODUCTION 

Complex products refer to a class of products with complex customer requirements, system components, 

product technology, manufacturing processes, test and maintenance, project management, and complex 

working environment (Li et al. 2011). It has the characteristics of high design difficulty, high cost of test 

operation and maintenance, strict quality requirements, and high demand for intelligence. At the same time, 

it faces major challenges such as one-time success, on-time delivery, cycle, and cost compression. To solve 

the above problems, it’s essential to rely on modeling and simulation.  

In recent years, Model-based Systems Engineering (MBSE) has become an important means to support 

system modeling and development (Ramos, Ferreira, and Barcelo 2012). Taking complex products as an 

example, MBSE transforms the traditional R&D method based on documents and physical models into a 

model-driven R&D method. This formal description method makes MBSE reusable, unambiguous, easy to 

understand, and easy to spread. MBSE uses System Modeling Language (SysML) to model the whole 

process of the system to realize the model-based unified management and optimization of the whole process 

of product development (Friedenthal, Moore and Steiner 2008). Since SysML cannot be directly simulated, 

it is necessary to use other multi-domain modeling and simulation methods to verify the correctness and 

completeness of the model.  

A mainstream approach is to uniformly describe system components in different domains based on a unified 

modeling language to achieve seamless integration and data exchange of multi-domain models (Zhao et al. 

2006). For complex products with integrated mechanical, electrical, hydraulic, and control types, firstly 

based on system modeling language (such as SysML, IDEF, etc.) for demand modeling and architecture 

design, and then based on physical modeling language (such as Modelica, etc.) and coordinate integration 

standard specifications (FMI, HLA, etc.), to achieve the development and integration of physical models, 

and finally through the mapping and conversion among the system model and the physical model for full 

system modeling and simulation, to achieve unified management of different stages of product 

development. However, due to the disconnection between the system modeling language and the physical 

domain modeling language, the connection needs to be realized through conversion. Therefore, it is difficult 

to ensure the consistency and traceability of the whole process. Moreover, this method lacks the ability for 

intelligent product modeling and simulation.  

To solve the above problems, this paper proposes a new integrated intelligent modeling and simulation 

language, which supports the description of system-layer structure and physical behavior and simulation, 

modeling of complex agent models, and supports continuous, discrete event and hybrid simulation. At the 

system modeling layer, the framework is divided into five parts of definition, connection, state machine, 

equation, and action, designed to represent structure and behavior. At the layer of physical modeling and 

simulation, the continuous model, discrete event model, and agent model are incorporated into the couple 

models of DEVS (Discrete Event System Specification) (Zeigler and Sarjoughian 2017). The interpreter 

and engine are developed to realize the simulation of the whole system of complex products. 

2 RELATED WORKS 

In terms of complex products modeling, typical modeling languages and methods include modeling 

methods based on DEVS, system modeling methods based on SysML, multidisciplinary unified modeling 

methods based on Modelica, Bond diagram-based system dynamic structure modeling method, European 

simulation language (ESL)-based software and hardware coordination modeling method, Dymola 

language-based system dynamics modeling method, and high-level architecture (HLA)-based distributed 

simulation system modeling method.  

SysML is the standard modeling language for systems engineering. It is particularly effective for 

requirements analysis, structural design, functional description, and system verification in system 

engineering applications (INCOSE 2012). However, the native SysML model is static and cannot be 

directly used to verify the correctness and completeness of the model. In this case, the SysML model should 
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be converted to a model of a specific domain, such as Modelica models. Generally, for systems with 

different characteristics, the types of SysML diagrams used are also different. Peak et al. (2007) proposed 

a method of using SysML parameter diagrams to describe the behavior of continuous systems. Batarseh 

and McGinnis (2012) elaborated on the description of discrete event systems based on SysML activity 

diagrams, sequence diagrams, and state machine diagrams. Although the SysML model can be extracted 

and used by the conversion method, the system engineer must add a large amount of simulation code, 

especially the code related to the system behavior, to obtain an executable simulation model. This method 

is cumbersome and not very versatile (Kapos et al. 2014). As a system-level description language, SysML 

can describe the event relationships between agents very well, and can easily establish conceptual models 

of agents (Sha, Le and Panchal 2011; Maheshwari, Kenley and Delaurentis 2015). However, the native 

SysML model is static, and the simulation of the agent model needs to rely on other simulation tools. 

Moreover, SysML is not originally designed for the agent model. 

Modelica was proposed in 1997 based on summarizing and unifying the previous multiple modeling 

languages. The language has many advantages such as high model reusability, simple and convenient 

modeling, no symbol processing, etc. At the same time, the system standard library of Modelica also 

provides basic components and typical system models in many fields, including electrics, fluids, 

thermodynamics, machinery, etc. (Fritzson 2011), which provides great convenience for model 

development and simulation of physical systems. Although Modelica can model and simulate continuous, 

discrete, and hybrid models, it lacks sufficient support for discrete models due to its equation-based 

characteristics (Nutaro et al. 2012) and has the problems of inconvenience in description and low simulation 

efficiency. Therefore, Modelica lacks support for modeling large-scale discrete systems (Elmqvist et al. 

2012; Beltrame and Cellier 2006). As one of the most commonly used languages in modeling and 

simulation, Modelica is also employed in agent models. However, due to the insufficient support of 

Modelica for discrete models, the research of agent modeling based on Modelica is mainly focused on the 

support of third-party libraries. In addition, some studies focus on using Modelica to describe continuous 

behaviors or actions in agents, rather than modeling and simulation for agents or the whole agent system 

(Aertgeerts et al. 2015; Schaub, Hellerer and Bodenmüller 2012). 

DEVS is a modular, hierarchical, and formal specification for system modeling and simulation, supporting 

object-oriented mechanisms. The specification was initially only used to build discrete systems, and 

subsequent research has enriched and perfected the specification for modeling and simulation of hybrid, 

i.e. both continuous and discrete, systems. As a kind of discrete model, the agent model can be described 

in DEVS very well. Zhang (2013) constructed a complex agent perception architecture based on multiple 

types of atomic models, and the BDI model is used as a component of the entire perception architecture. 

However, the entire model is too large, and many parts are not common to most agent models, so it appears 

to be relatively redundant. Akplogan et al. (2010) used the DEVS couple model to build a BDI agent model 

to solve the problem of agent decision-making in agricultural applications and proved the feasibility of the 

overall architecture. Müller (2008) used DEVS to build a set of system models from the perspective of 

multi-agents and modified the original DEVS atomic model to adapt to the characteristics of multi-agents. 

However, the method in the article is not applicable when facing a single complex agent. Although there 

are many agent models based on DEVS, the specifications provided by DEVS are relatively simple 

compared to the agent model, and the process of constructing the agent model also needs to reorganize the 

DEVS model. 

To sum up, the existing modeling languages are mostly aimed at a certain part of modeling and simulation 

and lack the ability of full-process collaborative design. Although the integrated method of system design 

and simulation can realize the unified management of different stages of product development, its essence 

is still achieved through the mapping and conversion between languages. It may be easy to deal with a 

single domain model, however, it is difficult to support the modeling and simulation of complex systems 

that contain continuous, discrete event and intelligent properties. 
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3 HIERARCHY AND BASIC ELEMENTS OF X LANGUAGE 

Hierarchy of  X Language  

Couple Model

Continuous Model Discrete Model Agent Model

Definition Connection State Machine EquationAction

Level of System Modeling

Level of Model Simulation

 

Figure 1: Hierarchy of X language. 

The original intention of designing X language is to support the description of system-layer structure and 

physical behavior and simulation verification, modeling and simulation of various complex agent models, 

continuous/discrete and hybrid simulation. As shown in Figure 1, at the level of system modeling, five parts 

are designed to express the structure and behavior of the system. At the model simulation level, the 

continuous model, discrete model, and agent model are regarded as part of the couple model, which supports 

the verification of physical behavior. 

As shown in Figure 2, X language modeling framework consists of 5 parts. The definition and connection 

parts define the system model from a global perspective, explaining which components the system contains 

and the connection relationship among them, mainly used to describe the structure. The equation, action, 

and state machine are used to describe system behavior and the description form varies according to the 

characteristics of the model. For example, continuous models can be modeled by equations, and discrete 

models modeled by state machines. 

Modeling Framework of 

X Language

Structural Properties Behavioral Properties

   parameter:

   

part:

  

   connection:

   

connect ( , ...)

connect ( , ...)

   state:

   

initial state 

  

   equation:

   

der (H) 

  

   action:

   

function (X) 

  

 

Figure 2: Modeling framework of X language. 

X language supports model-based system engineering and can provide the ability to verify the entire process 

of system design. The model building can be directly interpreted as simulatable DEVS codes via the 
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interpreter. The X language engine is a multi-domain engine designed based on DEVS, which can support 

cross-domain modeling in multiple domains including continuous, discrete, and agent models. The 

simulation result can be directly fed back to the designer to verify the system function. 

3.1 Definition 

The definition part defines the elements and their relationships from the system structure layer. These 

elements are the basis of other section and commonly composed of parameter properties, composition 

properties, value properties, port properties, etc., which are used to define the parameters and their types to 

be instantiated, the internal structure of the module, state variables, the external module to be called, and 

the behavior sequence of the agent, respectively. In addition, modules that have been defined somewhere 

can be imported or inherited in this section. 

The following is the grammar of the definition part described in the extended BNF, where {A} means 0 or 

more As and [A] means an optional A. 

definition_section ::={(import_clause | extends_clause  
    | class_definition 
    | parameter_component_clause)';'} 
    { port_section 
    | part_section 
    | value_section 
    | plan_definition}  
import_clause ::= 'import' (IDENT '=' name | name ('.' ( '*' | '{' import_list '}' ) )? ) 
extends_clause ::= 'extends' type_specifier [class_modification] 
class_definition  ::= ('encapsuate')?  class_prefixes class_specifier 
parameter_component_clause ::= 'parameter' type_specifier component_list 
port_section ::= 'port:'{port_component_clause} 
part_section ::= 'part:'{component_clause';'} 
value_section ::= 'value:'{component_clause';'} 
import_list ::= IDENT {',' IDENT} 
component_clause ::=['replaceable'] type_prefix type_specifier component_list 

 

3.2 Connection 

The connection part defines the connection relationship among the components in the couple model from 

the structural level. This connection is realized through ports, which transfer events, energy, and data, as 

well as services provided and requested by the connection. The extended BNF of the connection part is as 

follows. 

connection_section ::= 'connection:'{connect_clause';'} 
connect_clause ::= 'connect' '(' component_reference ',' component_reference ')'  

 

3.3 State Machine 

The state machine part is used to describe the discrete behavior of the model and express the changes of the 

system states as events occur. In each state, it generally includes the duration of the state, the behavior 

generated by the internal/external event, and its output. Specifically, in the when_entry area, the duration 

of a state is defined by the function statehold. In the when_receive area, the model receives external event 

triggers and generates output. The when timeover statement is used to describe the behavior triggered by 

internal events and the resulting output. The extended BNF of the state machine part is as follows. 

state_section ::= 'state:' {state_definition} 
state_definition ::= 'initial' 'state' IDENT  (state_statement)*  'end'';'       
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    | 'state' IDENT  (state_statement)*  'end'';'         
    | 'state' IDENT  catch_clause  ((when_receive_clause';')|(when_statement';'))* 'end'';'               
state_statement ::= (when_entry_clause 
    | when_receive_clause 
    | when_goto_out_clause)';' 

 

3.4 Equation 

In the equation part, systems with continuous behavior are described based on mathematical equations with 

declarative and non-causal characteristics. Specifically, a set of ordinary differential/partial differential 

equations is used to describe a model with continuous behavior, among which, equations can be divided 

into simple equations, if-equations, when-equations, when-receive equations, for-equations, etc. The if-

equation is used to define the behavior triggered by constraint conditions. The when-equation is used to 

define the behavior triggered by an instantaneous state. The for-equation is used to define the behavior that 

is cyclically executed when a certain condition is met. The extended BNF of the equation part is as follows. 

equation_section ::= 'equation:' {equation ';'}  
equation ::= simple_equation       
    | if_equation      
    | for_equation    
    | when_receive_equation   
    | when_equation 
 

3.5 Action 

The action part mainly describes the behavior of the agent model, as well as intelligent behavior. The agent 

model is constructed based on the BDI architecture, from which the plan of each agent can be extracted. 

On this basis, the execution logic of multiple defined plans is sorted to form a plan sequence, which can 

effectively control the behavior of the agent. The extended BNF of action part is as follows.action_section 

::= 'action:' {statement';'} 

statement ::= send_clause 
    | simple_statement 
    | function_call  
    | break_statement 
    | continue_statement 
    | return_statement 
    | if_statement      

| for_statement    
    | while_statement      
    | when_statement  
    | statehold_clause 
    | run_statement 
    | agentover_statement 
    | transition_clause 

 

The above 5 parts are the basic components of model description, when modeling, the structure and 

behavior of the model are described in the forms of classes, including continuous, discrete, couple, agent, 

record, function, and connector class. A class is composed of one or more parts, as shown in Figure 3. 
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Class of X Language
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Action
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Figure 3: Composition of X language classes. 

4 THE INTERPRETER AND ENGINE FOR X LANGUAGE 

X language is an object-oriented multi-domain system modeling language. The elements of the language 

include not only the characteristics of traditional programming language, but also the characteristics of 

equation-based modeling languages. These two kinds of languages usually adopt different routes in 

interpretation, which leads to different technical routes in X language interpretation. 

The interpretation of X language is divided into two stages, namely the front-end and the back-end. In the 

front-end, the interpreter will perform lexical analysis and syntax analysis on the source code to obtain an 

abstract syntax tree, and finally, make a symbol table by traversing and collecting the information of the 

elements in the model to prepare for the subsequent interpretation. In the back-end part, the interpreter will 

process the abstract syntax tree that has been processed by the front-end.  

When building the engine for X language, it is necessary to consider the simulation capabilities for the 

domains that need to be supported and the interaction among them. DEVS is a commonly used multi-

domain modeling and simulation framework, which can support continuous, discrete event, and agent 

simulation (Zeigler and Sarjoughian 2017), therefore, it is chosen for the X language engine. 

In the X language engine, the communication between the adjacent simulator and coordinator is based on 

the message. Each time an event occurs (internal or external), the coordinator will send a transformation 

message to its child nodes to inform them to perform the transformation. When the simulator executes its 

internal or external events, it will calculate its next state. If it performs internal transformation, it also needs 

to send the output to its parent coordinator. There are three types of communications between the simulator 

and the coordinator, which are the internal and external event notification from the coordinator to the 

simulator and the output from the simulator to the coordinator. 

5 CASE STUDY 

The three components of the tank system-the tank, the PI controller, and the source of liquid-are explicit in 

Figure 4. The tank is connected to the controller and liquid source through connectors. Liquid enters the 

tank from the source, and leaves the tank at a rate controlled by the valve.The tank has four connectors: qIn 

for input flow, qOut for output flow, tSensor for providing fluid level measurements, and tActuator for 

setting the position of the valve at the outlet of the tank. 

The liquid level h in the tank must be maintained at a fixed level as closely as possible. The flow of the 

liquid source increases sharply at time = 150 to the factor of three of the previous flow level, which creates 

an interesting control problem that the controller of the tank has to handle.  

The X code of this case is demonstrated in Appendix. In order to facilitate readers to understand the 

modeling method of X language, combined with the content of Chapter 3, a brief description of the case 

code is given. We simulate the tank system and obtain the response as shown in Figure 5. 
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Figure 4: A tank system with a tank, a source for liquid, and a controller. 

 

 

Figure 5: System simulation result. 

Split the tank system into 5 models, namely topmodel, LiquidSource, TankPI, Tank, and 

PIcontinuousController, where topmodel is a couple model, including LiquidSource and TankPI, and 

TankPI is also a couple model, including Tank and PIcontinuousController, Tank and 

PIcontinuousController are simple models. 

The definition part is used in all these 5 models, such as the part in the topmodel and the parameter, value, 

and port in the Tank. The topmodel is a couple model, the connection part needs to be used to define the 

relationship between different components. For example, the qOut of ls and the qIn of tpi are connected to 

each other to indicate the direction of liquid flow. Since the flow rate of the LiquidSource is discrete, it is 

described by state machine. The LiquidSource has three states including init, pass, and idle. Among them, 

the duration of the state init is 0, and the next transition state is pass. When a state transition occurs, the 

current Flowlevel is assigned to the output event port qOut. The duration of the state pass is 150, and the 

next transition state is idle. When a state transition occurs, 3 times the Flowlevel is assigned to the output 

event port qOut, then enters the state idle and remains the state. The liquid level h in the tank changes 

continuously with time, so its behavior can be described by equations as demonstrated in Tank. The 

controller is an agent, which is used to control the liquid level h in the tank to be maintained at a fixed level 
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as closely as possible. In the PIcontinuousController, there is only one task of controlling the liquid level, 

so only one plan is needed. The controller takes the value of the current level as input, calculating the level 

at the next moment through the equation, and transmits the result to the Tank to complete the entire control 

process. After the controller model completes a loop, it will wait for the next input information. 

6 CONCLUSION 

Modeling and simulation have become an important means of supporting analyses and development of a 

complex product. However, the existing modeling languages lack full-process modeling and simulation 

capabilities, and it is often necessary to complete integrated modeling through multiple language 

conversions or tool integration. Therefore, this paper proposes a new integrated intelligent modeling and 

simulation language - X language, which supports the description of system-level structure and physical 

behavior, as well as modeling of complex agent models. Interpreter and engine are developed to enable X 

language to support the simulation of continuous, discrete event and agent models. Finally, the tank system 

was taken as a case to verify the modeling and simulation capabilities of the X language. Due to space 

limitations, this paper does not elaborate enough on the X language, and the authors will further introduce 

it in subsequent papers. 

ACKNOWLEDGMENTS 

This work was supported by the National Key R&D Program of China, No.2018YFB1701600. The authors 

hereby would also like to thank Dr. Tingyu Lin and Dr. Guoqinag Shi from Beijing Institute of Electronic 

System Engineering, for participating in the discussions and providing valuable suggestions. 

A APPENDICES 

Please enter the following link to view the code: https://github.com/ffsuiyue/xcode 
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